a2 United States Patent

Quernemoen

US006542893B1

US 6,542,893 Bl
Apr. 1, 2003

(10) Patent No.:
5) Date of Patent:

(549) DATABASE SIZER FOR PREEMPTIVE

MULTITASKING OPERATING SYSTEM

(75) Inventor: John M. Quernemoen, New Brighton,
MN (US)
(73) Assignee: Unisys Corporation, Blue Bell, PA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 09/515,308
(22) Filed: Feb. 29, 2000
(51) Int. CL7 .o GO6F 17/00
52) US.ClL 707/100; 707/10; 707/205
(58) Field of Searchccccccoeene 707/1-4, 7, 8,
707/10, 100-104.1, 200-205; 706/45, 46,
48, 60-62; 711/161, 162, 170-173; 717/100,
104-109; 702/186
(56) References Cited
U.S. PATENT DOCUMENTS
4,804,950 A * 2/1989 Moon et al. 345/173
5,065,360 A 11/1991 Kellycceeens ... 708/142
5,091,852 A * 2/1992 Tsuchida et al. 707/2
5202235 A * 6/1993 Hintz et al. wovvoverveeen.. 703/22
5,299,115 A * 3/1994 Fields et al. ..cooveeen..... 700/99
5404510 A * 4/1995 Smith et al. 706/934
5,452,447 A * 9/1995 Nelson et al. 707/205
5617514 A 4/1997 Dolby et al. v..ovveen.n... 706/45
5630,025 A 5/1997 Dolby et al.c.cco.e...... 706/46
5745004 A * 4/1998 King et al. ... 707/200
5,832,182 A * 11/1998 Zhang et al. 382/226
5,839,438 A * 11/1998 Graettinger et al. 128/904
5,852,818 A * 12/1998 Guay et al.ccoeeennnnen. 707/1

(List continued on next page.)
OTHER PUBLICATIONS
Compaq Computer Corporation, “White Paper”, 5 pages,
Jun. 1998.

DATABASE SIZE CALC!

SQL SERVER 6.5 & 7.

INPUT PARAMETERS
208 PERTABLE
PN
' ~
NoFixedSizeCols L
TolalFixedBylesPerRow -
NovarCharcols ————<»]

TotaNVarChariytesPerRow ~—<*|
NoRows. NG
FilFactor —— %
Lm

262

INPUT PARAMETERS
208 PER INDEX &
PER CLUSTER INDEX 35

NoFixedSizelCs
TotalFixedBytesiCPerRon ——o]
NoVarcharlCs —
TotalVarCharBytesPerRow ——<»|

FilFactor ——————+

zwg7
o

228_
PageSize S
FilFactor ———]
LogFileSpace—<_ "
TempSpace —<»]
0SEAPSW ——]
SystemDBs
GrowthPet

288

240

Kim Shanely, “History and Overview of the TPC”, 14 pages,
Feb. 1998.

“TPC-C Results—Revision 3X”, downloaded from www.t-
pc.org, 4 pages, dated prior to Feb. 29, 2000.

“TPC-R Benchmark”, downloaded from www.tpc.org, 2
pages, dated prior to Feb. 29, 2000.

“TPC-H Benchmark”, downloaded from www.tpc.org, 2
pages, dated prior to Feb. 29, 2000.

Jack Stephens, “TPC-D The Industry Standard Decision
Support Benchmark™, 28 pages, dated prior to Feb. 29, 2000.
Select pages from www.tpc.org, 12 pages, downloaded Nov.
2, 1999.

User Guide, Compaq System Sizer v8.1 for Oracle8i NT4.0,
Compaq Computer Corporation, Jun. 1999, pp. 1-40.
User Guide, Compaq Sizer 2.30 for Microsoft SQL Server
7.0, Compaq Computer Corporation, Oct. 1999, pp. 1-44.
“TPC-D Benchmark”, downloaded from www.tpc.org. 6
pages, dated prior to Feb. 29, 2000.

Primary Examiner—Greta Robinson

Assistant Examiner—Harold E. Dodds, Jr.

(74) Attorney, Agent, or Firm—Charles A. Johnson; Mark
T. Starr; Crompton, Seager & Tufte, LLC

(57) ABSTRACT

Methods for calculating total mass storage requirements for
a relational database table including database storage
requirements, application and software requirements, sys-
tem table requirements, scratch and sort requirements, log
file requirements, and growth requirements. One method
utilizes detailed inputs for each table and table index.
Another method produces and utilizes estimates for the
database and index requirements for all tables together.
Methods can use input parameters including the page size,
a fill factor, the log file space, the temporary space, the
operating system and application software space, the system
database space, the growth percent space, and the page file
space. Some methods also take into account inputs such as
the number of table, the amount of data, the average number
of columns per row, the average row size, the percent of
variable length columns, and the average variable length
column size per table.

15 Claims, 7 Drawing Sheets

ULATION- (DETAILED)
0

200
204 T
%f
264

260

272

270 [“* DataBaseTotal
204w Applications0S

R SystemTables

Lw ScratchaSorSpace

-
246
248
260-_y™ LogFile
fre Growih
282
284

252

Total
Mass
Storage

1286

202

US 6,542,893 B1

Page 2
U.S. PATENT DOCUMENTS 6,351,754 B1 * 2/2002 Bridge et al. 707/202
6,377,958 Bl * 4/2002 Orcutt ... 707/200
5,862,481 A * 1/1999 Kulkami et al. 455/432 6,397,223 B1 * 5/2002 KO veevevereeerereeeereerrnnns 707/1
6,003,022 A * 12/1999 Eberhard et al. 707/2 2001/0054031 Al * 12/2001 Lee et al. ...c..ococvvevnnen. 705/406
6,112,200 A * 8/2000 Gusackocococeveeeeeennn. 707/1
6,272,549 B1 * 8/2001 Danieleoveveereeennne. 709/206 * cited by examiner

8¢

US 6,542,893 Bl

/\. IN3ITO

IN3ITO

8¢

Sheet 1 of 7

Apr. 1, 2003

U.S. Patent

o¢

I "OIH

0¢

I £

8¢

Y

ve
e | T
~ /J/w OIN \ [
N OIN ob HILNIN
{_OIN ~
0€ =
e
¢ = o
vN./\
CeN~

d3JAH3S

U.S. Patent Apr. 1, 2003 Sheet 2 of 7 US 6,542,893 B1

60

INDEX
1/
|
I

FIG. 2

//\,58

¥

-~

RDBMS
TABLE
B-TREE
INDEX

50

64

¢

s

52
0
62

US 6,542,893 Bl

Sheet 3 of 7

Apr. 1, 2003

U.S. Patent

AERER el
i [C

€ 13NT1 6 /
J

¢ OIA

L 13A3T

¥8

U.S. Patent Apr. 1, 2003 Sheet 4 of 7 US 6,542,893 B1

DATABASE SIZE CALCULATION- (DETAILED)

SQL SERVER 6.5 & 7.0 200
INPUT PARAMETERS /x
208 PER TABLE 204
262 /‘”
NoFixedSizeCols >-264
TotalFixedBytesPerRow '—4:_ 266
NoVarCharCols > 242 212
TotalVarCharBytesPerRow —ﬁ/ﬂz E r__/\j_\
NoRows \5»270 DataBaseTotal
FillFactor L\ > 2447\ Application&0S
268 246 7 o SystemTables

INPUT PARAMETERS 248 \ Scratch&SortSpace

209 PER INDEX & _
PER CLUSTER INDEX g, 250~_f > LogFile
g Growth
NoFixedSizelCs 082 E
TotalFixedBytesICPerRow 252
NoVarcharlCs -284
TotalVarCharBytesPerRow —t/—286
FillFactor >
L Total
Mass 202

210 288 Storage
/l/\’_\ A
228
PageSize L»

FillFactor 44 A

LogFiIeSpace—4:-223:4 R
TempSpace ——<» A

SystemDBs _¢r238 g FIG. 4
GrowthPct T»
240
A

US 6,542,893 Bl

Sheet 5 of 7

Apr. 1, 2003

U.S. Patent

ose 0olc
ladsp|alJua1iepO \N S / \

[D19dSPp[a1JUsTIEAON N s

Jadsp|at{uapaxi4oNBA O d
1049dsp|aijuaTpaxiJONDAY A\wvm | S ovN\U P QUMOID
2198 LIBdIOONBAY > w L gggJv——— ssquersis
nhaoHa ~—— Msdveso

IOUONISISPISIJUSTEAON W 98¢~
—~Pre n v ez %l aoedgduwa |
|DUONJI8splalquaTpaxiJONBAY A S S| ./%l|¢omaww__n_mo._
~Che S v A4 10308 4|14
m_gmtmn__ocozozméA v d w oz1g0bey
S~ 7 \\ovm _-90z2 ﬁ 02
26¢ ™ cge 243 8ee
A

UMoID Aﬂ AJro_nmto%N_m_ooEch_m>m><
4 a)14607 0081 |onuyibusiepjusoiay
aoedguogRYoleINg AA o 9Z21ISMOY BAy
mmm_oymwwm_\,__ﬁo._.uA so|qe | WalsAg Aﬂswvm ole-Te>— mOYIadIoQONBAY
202 sOguoneoddy A;mvm pLe - elRQIUY
f |ejO | @segeleq vz - \ sa|qe | ON
<+ uonos9Ies SNgd

Zve Z0¢ 43

Zle oom/\

CTOIA 00¢ S 02969 uaANTS Tos So L TNVEV LNdNI

(Q3LVYWILST) -NOILYIND VO 3ZIS 3Svav.Lvd

U.S. Patent Apr. 1, 2003 Sheet 6 of 7 US 6,542,893 B1

DATABASE SIZE CALCULATION- (DETAILED)

ORACLE 8.0X 400
INPUT PARAMETERS /\’
208 PER TABLE 204
Z . 262 /_J
NoFixedSizeCols f > 264
TotalFixedBytesPerRow —é:/\~26 6
NoVarCharCols »> 242 212
TotalVarCharBytesPerRow —Y/‘272 K_§_/_j_\
NoRows
) \:»270 DataBaseTotal
FillFactor C 244N Application&0S
268 2467/ o SystemTables
INPUT PARAMETERS

209 PER INDEX 248 _p+ Scratch&SortSpace

280 250 \/T’ LogFile
g I Growth

NoFixedSizelCs
) 282
TotalFixedBytes|ICPerRow 252
NoVarcharlCs -284

TotalVarCharBytesPerRow j/-286
FillFactor
L Total

202
210 Mass

288 St
j i orage
228
PageSize /\———>

FillFactor —C A

LogFiIeSpace—£~223324 R
TempSpace ——» A
OS&ApSW 236 E [

SystemDBs ———>1 535 T FIG. 6

GrowthPct —C—r E
240 N 410 R
INITRANS_D——4 S

INITRANS_X

y

US 6,542,893 Bl

Sheet 7 of 7

Apr. 1, 2003

U.S. Patent

L "OIA

Xapujiadsp|alJUaTUeAON h
XopUJIadSplolJUSTPexIJoN Lo

a|qe | JadsaxapujoNbBAy .h

MMQ)\/K

-

obelojgssepelo F\QA

c0c
.

/!

0S¥y

S «———X SNVYLINI
N < «———(0 SNVHLINI
O S|
_ 3 e——————— J0d4UmolIo
1 1 «—— sgquelsis
~ Zo¥ _\n,__ - _\m,__ «—— MSdyeSO
l«—— soedgdwa
~ogy N v Setiel
S be| «————20edgo|i4607
~-8Gv S v '« 33Y410d
v d —————— 9Z1SXJ0|gd
vmv/\ .vov/\ M\)\/\
v 8Ly
ymoio «— 3|qe | 1949zIS|00y)buaieABAY
914607 - - j00yibuaiepjuasiad
20edgUOSQYIIRING <& - 2zZIGMOYBAY
S3|qe] WaISAS - «———— MOYIad|0DONBAY
goOxuoneolddy e -t eleqluy
|ejol9segele] -« - S9|qe | ON
//U/\IJW\ - uopRleS SNEQ
v
AX 26p ~J q _/
90¢
SYIALINVHVC LNdNI
X0'8 370VH0

(@3LVINILST) -NOILLYINDTVYD JZIS 3ASvav.lvd

US 6,542,893 B1

1

DATABASE SIZER FOR PREEMPTIVE
MULTITASKING OPERATING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is related to the following
co-pending applications filed on date even herewith: U.S.
application Ser. No. 09/515,310, filed Feb. 29, 2000, entitled
SIZING SERVERS FOR DATABASE MANAGEMENT
SYSTEMS VIA USER DEFINED WORKLOADS; U.S.
application Ser. No. 09/514,801, filed Feb. 29, 2000, entitled
COMBINATION OF MASS STORAGE SIZER,
COMPARATOR, OLTP USER DEFINED WORKLOAD
SIZER, AND DESIGN; U.S. application Ser. No. 09/515,
158, filed Feb. 29, 2000, entitled titled BUILT IN HEAD-
ROOM FOR AN NTSYSTEM SIZER; U.S. application Ser.
No. 09/516,272, filed Feb. 29, 2000, entitled ALGO-
RITHMS TO CALCULATE MASS STORAGE REQUIRE-
MENTS FOR NT SIZER; and U.S. application Ser. No.
09/514,5006, filed Feb. 29, 2000, entitled METHOD OF
COMPARISON FOR COMPUTER SYSTEMS AND
APPARATUS THEREFOR. All of the aforementioned
co-pending patent applications are hereby incorporated by
reference.

FIELD OF THE INVENTION

The present invention is related generally to computers
and database software. More specifically, the present inven-
tion is related to software for sizing relational database
management systems (RDBMSs). The present invention
includes methods for determining the required size for
database storage.

BACKGROUND OF THE INVENTION

Relational databases came into common use in computers
over twenty years ago. Despite improvements in database
software and new methodologies, relational databases
remain the mainstay of database management systems.
Hardware vendors originally supported proprietary database
management systems which ran primarily on machines
manufactured by the hardware vendor. Software developers
later developed database management systems that were
more open and ran on computers made by several vendors.
The database management systems were also ported to run
under various operating systems. This gave the advantage of
spreading the cost of development over more sites and also
uncoupled the dependence between hardware vendors and
software vendors. Third party support and training also
became more common.

Database management systems also became separated
into client-side software and server-side software. This
meant that the server-side software was decoupled from
software having to do with the display, use, and formatting
of the data received from the database. In particular, server-
side software often handled mostly queries of existing data
along with updates of existing data and insertion of new
data.

Modern electronic commerce such as commerce over the
Internet or business-to-business electronic commerce has
placed increased demands on many servers. This has also
made frequent upgrades necessary. Company mergers and
acquisitions frequently make it necessary to incorporate
large amounts of data from unexpected sources. Customer
expectations also make it necessary to upgrade hardware to
keep up with the faster response times users expect even
though system loads may be increasing as well.

10

15

20

25

35

40

50

55

60

65

2

When upgrading or replacing database servers, it is nec-
essary to have a good idea as to the size of the database that
will have to be implemented on the new server. The data
storage as well as storage of many different indices will all
increase the amount of data required. It may be necessary to
come up with a good estimate of the required amount of
mass storage in a short time period, as during bid
evaluations, during sales presentations, or repeatedly during
scenario building. The person supplying the input may have
only a rough idea as to the database mass storage require-
ments.

What would be desirable are methods for quickly calcu-
lating the data storage requirements for relational database
systems capable of using either estimated or detailed
requirements as input.

SUMMARY OF THE INVENTION

The present invention includes methods for estimating the
required bytes of mass storage for a database management
system using detailed inputs and parameters. An illustrative
method includes the steps of: providing detailed inputs for
tables in the database sufficient to calculate the required
table size for each table; providing detailed inputs for each
index for each table in the database sufficient to calculate the
required index size for each table; providing input param-
eters for each RDBMS including the page size, the fill factor,
the log file space, the temporary space, as a percent of the
formatted database size including indexes, the space
required for Operating System and application software, the
space required for system databases, the percent growth
required for the database, and the page file space; calculating
a total storage requirement for the database using the inputs
and input parameters; and calculating a storage requirement
for the data base management system using the inputs and
input parameters. In one method, the calculated storage
requirements include separately output Operating System
and application software space requirements, system table
space requirements, scratch and sort space requirements, and
log file space requirements.

Another illustrative embodiment includes a method for
estimating the required bytes of mass storage for a database
management system using estimated inputs and parameters.
An illustrative method includes the steps of: providing
inputs for tables in the database sufficient to calculate the
estimated size for the database including the number of
tables, the amount of data, the average number of columns
per row, the average row size, the percent variable length
columns, and the average variable length column size per
table; providing input parameters for each RDBMS includ-
ing the page size, the fill factor, the log file space, the
temporary space, as a percent of the formatted database size
including indexes, the space required for Operating System
and application software, the space required for system
databases, the percent growth required for the database, and
the page file space; providing assumptions including the
average number of non cluster indexes per table, the average
number of fixed length fields per non cluster index, the
average number of cluster indexes per table, the average
number of fixed length fields per cluster index, the number
of variable length fields per cluster index; and calculating a
storage requirement for the data base management system
using the inputs, input parameters, and assumptions. In one
embodiment of the aforementioned method, the calculated
storage requirements separately output Operating System
and application software space requirements, system table
space requirements, scratch and sort space requirements, and
log file space requirements.

US 6,542,893 B1

3
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a highly diagrammatic schematic of a computer
system including a database server;

FIG. 2 is a highly diagrammatic view of a relational
database;

FIG. 3 is a highly diagrammatic view of a B-tree index for
a relational database;

FIG. 4 is a simplified data flow diagram illustrating a
method used to determine the total mass storage require-
ments for an SQL Server system based on detailed inputs;

FIG. 5 is a simplified data flow diagram illustrating a
method used to determine the total mass storage require-
ments for an SQL Server system based on estimated inputs;

FIG. 6 is a simplified data flow diagram illustrating a
method used to determine the total mass storage require-
ments for an Oracle system based on detailed inputs; and

FIG. 7 is a simplified data flow diagram illustrating a
method used to determine the total mass storage require-
ments for an Oracle system based on estimated inputs.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 illustrates generally a database server system 20
including a server 22 supported by a CRT 24 and a printer
26 for programming, display, maintenance, and general
Input/Output uses. Within server 22 is illustrated several
CPU sockets 30 and 32, with CPU sockets 30 being popu-
lated with CPUs and CPU sockets 32 remaining empty for
future expansion and population. Server 22 also includes a
memory portion 40 which can contain a sufficient quantity
of Random Access Memory (RAM) to meet the server’s
needs. A disk 28 is illustrated for mass storage, which can
include disk drives or any other technology capable of
holding the contents of the databases or databases to be
managed. Several Network Interface Cards (NICs) 42 are
illustrated as part of server 22 and are coupled to a network
illustrated by a network link 36 which can be any commu-
nication link including Local Area Networks, Wide Area
Networks, Ethernet, and the Internet.

Also connected to data link 36 are client computers 38.
Software clients can, in fact, reside on the same machine as
the server, but in common practice, the client processes
usually run on a different machine. In one embodiment,
server 22 is a computer running on the Microsoft NT
operating system and clients 38 are smaller computers
running a Microsoft Windows operating system.

Server 22 is preferably scaleable, having extra socketed
capacity for memory, processors, NICs, and disk drives.
This allows extra CPUs, memory, NICs, and mass storage
such as disk drives to be initially set to meet current needs
and later expanded to meet changing needs.

Servers such as server 22 often exist to contain and
manage data bases, such as those contained within relational
database management systems (RDBMS). RDBMS include
tables formed of rows or records and columns. FIG. 2
illustrates an RDBMS table 50 formed of several columns
52 and several rows or records 54. Columns 52 typically
include both fixed length or width columns and variable
length or width columns, where the variable length may be
allocated out of a common buffer elsewhere outside of the
table itself. In practice, an RDBMS system has numerous
tables to be stored and managed.

It is possible for rows 54 to be ordered according to one
of the columns. In practice however, the records are typi-

10

15

20

25

30

35

40

50

55

60

65

4

cally not ordered, but are linked to indices that are ordered.
In a simple example, one of columns 52, such as column 56,
may contain a person’s social security number and be linked
via a software link 58 to an ordered index 60 which contains
a sorted list of social security numbers along with the record
number at which the corresponding record resides. Such a
sorted list of only one column of table 50 can shorten a
search from order n to order log n. Such a sorted list still
requires sorting upon the addition, deletion, and change of
data.

A commonly used index method is illustrated for column
62, which is linked via a software link 64 to a B-tree index
66. B-tree 66 can contain a multi-level tree well known to
those skilled in the software arts. B-tree 66 can be a
multi-way tree such as an AVL tree or a 2-3 tree. B-tree
indices have the advantage of being quick and easy to
modify, without requiring massive amounts of sorting such
as in a linear sorted index such as index 60. In particular, a
B-tree can be maintained in a balanced condition with the
addition of data to avoid skewing the shape of the tree.
Maintaining the balance of the tree allows a log n search
time to be maintained as well.

In practice, an RDBMS may use only a B-tree for the
indexing scheme, due to its utility and flexibility. An
RDBMS may maintain a B-tree on any column for which
ordered searching may be later requested. As the number of
columns to be indexed approaches the number of columns in
the table, the data storage requirements for the indices
themselves approach and pass the data storage requirements
of the table itself. Thus, the data storage requirements of the
indices are an important factor to be considered when
determining the mass storage requirements for a table and
RDBMS.

FIG. 3 illustrates a B-Tree 80 including a root node 82 at
level 1 having three links 84, 86, and 88 to nodes 90, 92, and
94 respectively at level 2. The nodes at level 2 are illustrated
as being doubly linked themselves through links such as
links 96 and 98. Links between nodes at the same level, such
as links 96 and 98, make maintenance of the B-tree some-
what easier, and browsing can be made somewhat easier as
well through use of such links. At level 3, links 100, 102,
104, 106, 108, and 110 are pointed to by the links at level 2.
Level 4 is the last level in the tree. B-tree 80 has four levels,
or a tree height of four. Level 4 may be said to be the “failure
level” of the tree, as level 4 is the level at which a search of
the tree will fail if it is to fail. If a value such as a social
security number is searched for but there is no such record
in the database, level 4 is the level at which the search will
fail. At level 4, nodes 112 and 114 are linked together as a
doubly linked list by links 113 and 115. In practice, the
failure level of a B-Tree is often linked together in this or a
similar manner.

In a B-tree, the nodes in the B-tree typically contain only
the key or column values the tree is ordered for and points
to nodes in the next level related to those keys or column
values. For example, in a two-way tree, a node would have
one index value, and two pointers, indicating which nodes to
go to for values greater than or less than the index value,
respectively. B-Trees and databases vary in what they have
at the failure level. In some databases, herein termed “physi-
cal ordered databases”, the failure level has the records
themselves linked together. In these databases, once the
failure level is reached, the record has been obtained, with
no further I/O necessary to obtain the record. In other
databases, herein termed “non-physical ordered databases”,
the nodes at the failure level contain only pointers or record
numbers into the main table. In these databases, another I/O

US 6,542,893 B1

5

is required to obtain the record of interest. In some
databases, the failure level contains neither the record of
interest nor a pointer to the record of interest. Instead, a
unique key is contained, requiring a search on that key to
obtain the record of interest. For example, a search of B-Tree
ordered on last name plus first name may return only a social
security number upon successful completion. Another B-tree
or highly optimized index based on social security number
can then be rapidly searched for the record of interest. In this
scheme, at least one more I/O is required after the failure
level has been reached. The number I/Os required to reach
a record is of interest to because it determines in part the
speed of the database. Both disk I/O and network I/O require
latent time to process.

In sizing a database, the RDBMS typically has a page
size, or an aggregate unit of mass storage typically number-
ing thousands of bytes. The page size on some computers
may be determined in part by operating system and disk
system factors. The page size may also be determined by a
desire to keep the width of internal variables within the
database to manageable limits. The page size is fixed in
some RDBMSs and selectable in other RDBMSs.

The amount of mass storage required for a single table is
a function of several variables, such as the number of rows
or records and the number of columns. The database storage
required is not a simple calculation of the row size and
column sizes for several reasons. First, the column sizes or
widths may be variable. Second, the page size enters into the
calculation in a non-continuous manner, as some database
allocation such as record allocation must lie within a single
page rather than cross page boundaries, with some space
wasted as a result. Third, some space in a page is set aside
for future expansion or reserved for use a buffer space, as
when re-ordering data. Fourth, not all space within a page is
available for end user data storage, with some being used by
the RDBMS itself or for other overhead. In particular, in
some RDBMSs, a fraction of each page is specified as not
available for initial storage. In some RDBMSs, a number of
rows are set aside as non-usable. In some RDBMSs, a
fraction of each record is set aside as non-usable. As
previously mentioned, the size of the indices may be a large
portion of table storage even though the data itself may not
be stored within the indices. All of the aforementioned
factors makes sizing the required databases a complicated
matter, as is dealt with below.

Referring now to FIG. 4, a simplified data flow diagram
illustrates the data inputs and outputs for a method 200 used
to calculate the total mass storage required for a RDBMS
system, where the total mass storage is represented by
TotalMassStorage 202. Method 200 is the method termed
“detailed” in the present application, based on detailed
knowledge of the database requirements and input of those
requirements. In particular, the detailed inputs are those
inputs used to determine the required mass storage required
for each table, including the storage required for the data and
the indexes such as B-tree indexes. In a preferred
embodiment, the detailed inputs and methods are those
provided by related U.S. application Ser. No. 09/516,272,
filed Feb. 29, 2000, entitled ALGORITHMS TO CALCU-
LATE MASS STORAGE REQUIREMENTS FOR NT
SIZER, herein incorporated by reference and hereinafter
referred to as the “co-pending algorithm patent application”.

Method 200 utilizes user entered inputs 208 and 209 as
well as user entered parameters 210. Parameters 210 and
inputs 208 and 209 are operated on by a method represented
by box 204. Method 204 generates outputs 212 which can be
summed or otherwise processed to obtain TotalMassStorage

10

15

20

25

30

35

40

45

50

55

60

65

6

202. One output, DataBaseTotal 242, can be generated in the
detailed case on a table-by-table basis for each table in the
database using the methods described in the co-pending
algorithm patent application.

Inputs 208 can be entered for each table in the database
and can include: the number of fixed size columns repre-
sented by NoFixedSizeCols 262; the total fixed bytes per
row represented by TotalFixedBytesPerRow 264; the num-
ber of variable size (varchar) columns represented by
NoVarCharCols 266; the total varchar bytes per row repre-
sented by TotalVarCharBytesPerRow 272; the number of
rows represented by NoRows 270; and the fill factor repre-
sented by FillFactor 268, which can be termed a fill factor
for DBMSs such as SQL Server and as 100-PCTFREE for
RDBMSs such as Oracle.

Inputs 209 can be entered for each index in the database
or for each clustered index in the case of a RDBMS such as
SQL Server, and can include: the number of fixed size index
columns represented by NoFixedSizeIC 280; the total fixed
bytes of index columns per row represented by TotalFixed-
BytesICPerRow 282; the number of varchar index columns
represented by NoVarCharlCs 284; the total varchar bytes of
index columns per row represented by TotalVarChar-
ByteslCPerRow 286; and the fill factor represented by
FillFactor 288, which can be a fill factor for RDBMSs such
as SQL Server and 100-PCTFREE for RDBMSs such as
Oracle.

Parameters 210 can be entered by the user and, in the
preferred embodiment, include default values. Parameters
210 can include: the page size, represented by PageSize 228,
which is preferably pre-set to the value for the selected
RDBMS; the fill factor, represented by FillFactor 230; the
log file space, as a percent of the formatted database size
including indexes, represented by LogFileSpace 232; the
temporary space, as a percent of the formatted database size
including indexes, represented by TempSpace 234; the space
required for Operating System and application software,
represented by OS&ApSW 236; the space required for
system databases, represented by SystemDBs 238; and the
percent growth required for the database, represented by
GrowthPct 240. Parameters 210 are also input into method
204 along with inputs 208 and 209.

In a preferred embodiment, method 204 utilizes the algo-
rithms previously 20 referenced in the aforementioned
co-pending algorithm patent. In one embodiment, FillFactor
230 defaults to 95 percent, LogFileSpace 232 defaults to 25
percent, TempSpace 234 defaults to 35 percent, OS&APSW
236 defaults to 1 GB, SystemDBs 238 defaults to 0.1 GB,
and GrowthPct 240 defaults to 25 percent. The inputs, input
parameters per index, and parameters discussed below are
mainly used to obtain the output DataBaseTotal 212.

Method 204 operates on inputs 208 and 209, and on
parameters 210, to generate outputs 212. Outputs 212
include: the data base total GB, represented by DataBase-
Total 242; the application and operating system space,
represented by Application&OS 244; the system table
requirement, represented by SystemTables 246; the required
scratch and sort space, represented by Scratch&SortSpace
248; the required log file space, represented by Logfile 250;
and the growth space, represented by Growth 252. Outputs
212 can be summed together to obtain the total mass storage
required, represented by TotalMassStorage 202.

To obtain outputs 212 from inputs 208, 209, and 210, in
a preferred embodiment, the method described below can be
used. The input names used in FIG. 4 correspond to variable
names used in the co-pending algorithm patent application,

US 6,542,893 B1

7

with the corresponding names included below. Input param-
eters per table 208 include those in Table 1 below. The
following table gives the correlation between the input
parameters in FIG. 4 of the present application with the
variable names used with respect to Figures in the
co-pending algorithm patent application.

TABLE 1
FIG. 4, present application Co-pending algorithm patent application
NoFixedSizeCols 262 FixedCol_D
TotalFixedBytesPerRow 264 FixedBytes_D
NoVarCarCols 266 VarCol_D
TotalVarCharBytesPerRow 272 VarBytes_D
NoRows 220 nRed
FillFactor 268 FillFactor_ D

The inputs can be used to determine a value for
RowSize_ D, as discussed in the co-pending algorithm
patent application, using the formula below in equation 1.
The formula in equation 1 for RowSize D is vendor depen-
dent. The calculation is based on the column sizes, the
number of columns, the type of columns, and the manner in
which the RDBMS vendor has designed the row format and
access within a page. The formulas such as equation 1
below, as well as later introduced formulas for index row
size, are supplied for completeness of description and as a
convenience to the reader.

RowSize_ D=[(2+FixedBytes_ D+VarBytes_ D)+(((2+Fixed-
Bytes__D+VarBytes_ D)/256+1)+(VarCol__D+3))*(VarCol__
D>0)]

®

RowSize_ D can be used as an input as illustrated and
described with respect to RowSize D 214 of FIG. 4 of the
co-pending algorithm patent application. FillFactor 268 can
be used as illustrated and described with respect to
FillFactor__D 208 of FIG. 4, and NoRows 270 can be used
as described with respect to nRed 220 of FIG. 4 of the
co-pending algorithm patent application.

Input parameters per index 209 can be used to represent
both the physical order indexes and the non-physical order
index described in the co-pending algorithm patent
application, where the clustered indexes or physical order
index variable names end in _ K and the non-physical order
index variable names end in _ X, denoted in the following
discussion with either the _ K suffix, the _ X suffix, or an
_ K/X suffix, to denote either or both.

Table 2 gives the correlation between the input parameters
in FIG. 4 of the present application with the variable names
used with respect to Figures in the co-pending algorithm
patent application.

TABLE 2

Non-Physical

FIG. 4 Physical Order Indexes Order Indexes

NoFixedSizeICs 280
TotalFixedBytesICPerRow
282

FixedCol_K
FixedBytes__K

FixedCol_X
FixedBytes_X

No VarCharICs 284 VarCol_K VarCol_X
TotalVarCharBytesPerRow VarBytes_ K VarBytes_ X
286

FillFactor 288 FillFactor_ K FillFactor_ X

RowSize_ K and RowSize_ X can be calculated using the
formulas below, as described in the co-pending algorithm
patent application, where S is an intermediate value.

10

15

20

25

30

35

40

45

50

60

65

8

RowSize_ K=[(5+FixedBytes_ K+VarBytes_ K)+(((5+Fixed-
Bytes_ K+VarBytes_ K)/256+1)+(VarCol _K+3))*(VarCol__
K>0)] @

©)
Q)
®

FillFactor 288 can be used as an input as FillFactor K
and FillFactor X in FIGS. 6 and 7 of the co-pending
algorithm patent application.

Method 200 also uses parameters 210 as inputs. PageSize
228 can be user entered, and, as discussed in the co-pending
algorithm patent application, can be reduced by 32 or 96 to
become the PageSize D variable used in that algorithm for
SQL Server 6.5 or SQL Server 7.0, respectively. FillFactor
230 corresponds to FillFactor D described in the
co-pending algorithm application. LogFileSpace 232 can be
entered as a percent of DataBaseTotal 242, to be used to
calculate LogFile 250 size using the relation:

S(7+FixedBytes X+VarBytes_ X+VarCol_X)
RowSize_ L=[S+((S+3)/256+4)*(VarCol_X>0)]

RowSize_ X=RowSize_ 1+4

LogFile=DataBaseTotal*(LogFileSpace/100) (6)

TempSpace 234 can be entered as a percent of DataBase-
Total 242 with output Scratch&SortSpace 248 thus being a
function of TempSpace 234 and DataBaseTotal 242, using
the relation

Scratch&SortSpace=DatabaseTotal *TempSpace/100

OS&ApSW 236 represents the operating system and appli-
cation software space required and can be user supplied and
passed straight through to become output Application& OS
244. Similarly, SystemDBs 238 represents the size of the
system database, which holds the data dictionary, etc.; it can
be entered as a number of bytes such as a megabytes and can
be user entered based on vendor supplied information for the
RDBMS and can be passed straight through to become
SystemTables 248. GrowthPct 240 can be entered as a
percent of DataBaseTotal 242 to be reserved for growth and
can be user entered and used to calculate the output Growth
252, using the relation

Growth=DatabaseTotal*(1+GrowthPct/100).

Referring now to FIG. 5, a method 300 is illustrated for
calculating the required total mass storage for a RDBMS
system such as a SQL server system, with the total require-
ment represented by TotalMassStorage 202. Method 300
uses estimated mass storage requirements for the table and
index requirements, as opposed to the detailed method
previously described. In particular, DataBaseTotal 242 can
be calculated using estimates. A method or algorithm 302 is
used to operate on several user entered inputs 306, several
assumptions 352, and parameters 210, where parameters 210
are as previously described with respect to FIG. 4. Similarly
named and numbered variables may, of course, have differ-
ent values in the different methods and embodiments.

Inputs 306 are user entered inputs and can include: the
RDBMS selection, represented by RDBMSSelection 310,
the number of tables, represented by NoTables 312; the
amount of data, represented by AmtData 314; the average
number of columns per row, represented by AvgNoColPer-
Row 316, the average row size, represented by AvgRowSize
318; the percent variable length columns, represented by
PercentVarLengthCol 320; and the average size of variable
length columns per table, represented by AvgVarLengthCol-
SizePerTable 322. In one embodiment, the average number
of columns per row defaults to 10, and the percent variable
length columns defaults to 15.

US 6,542,893 B1

9

Method 302 also utilizes several assumptions 352 which
can include: the average number of non-clustered indexes
per table, represented by AvgNonClIPerTable 340; the aver-
age number of fixed length fields per non-clustered index,
represented by AvgNoFixedLenFieldsPerNonCI 342; the
number of variable length fields per non-clustered index,
represented by NoVarLenFieldsPerNonCI 344; the average
number of clustered indexes per table, represented by
AvgNoCIPerTable 346; the average number of fixed length
fields per cluster index, represented by AvgNoFixedLen-
FieldsPerCI 348; and the number of variable length fields
per cluster index, represented by No VarLenFieldsPerCI 350.

In one embodiment, used for SQL server 6.5, the average
number of non-clustered indexes per table, represented by
AvgNonClPerTable 340, defaults to 0.3; the average number
of fixed length fields per non-clustered index, represented by
AvgNoFixedLenFieldsPerNonCI 342, defaults to 1.2; the
number of variable length fields per non-clustered index,
represented by NoVarLenFieldsPerNonCI 344, defaults to 0;
the average number of clustered indexes per table, repre-
sented by AvgNoClIPerTable 346, defaults to 1; the average
number of fixed length fields per cluster index, represented
by AvgNoFixedLenFieldsPerCI 348, defaults to 1.3; and the
number of variable length fields per cluster index, repre-
sented by NoVarLenFieldsPerCI 350, defaults to 0. The
values can be entered through a standard windows dialog
box, such as provided by Windows 98 or any other suitable
operating system.

Table 3 cross references the variable names and reference
numerals in FIGS. 4 and 5§ showing how the variables in
FIG. 4 are calculated as functions of input variables in FIG.
5. Having these functional relationships, the relationships in
Table 1 with the variable names used in the co-pending
algorithm patent application are used to make the calcula-
tions.

TABLE 3

FIG. 4, present application Expression using variables in FIG. 5

NoFixedSizeCols 262 (AvgNoColPerRow 316) * (1 -
PerCentVarLengthCol 320)
(AvgRowSize 318) -
AvgVarLengthColSizePerTable 320)
(AvgNoColPerRow 316) *
(PerCentVarLengthCol 320)
(AvgVarLengthColSizePerTable 320)
(AmtData 314) / (NoTables 312) /
(AvgRowSize 318)

FillFactor
AvgNoFixedLenFieldPerCI 340

TotalFixedBytesPerRow 264
No VarCarCols 266

Total VarCharBytesPerRow 272
NoRows 220

FillFactor 268
NoFixedSizeICs 280
(FixedCol__K)
TotalFixedBytesICPerRow 282
(FixedBytes__K)

((AvgRowSize 318) -
AvgVarLengthColSizePerTable 320)) *
AvgNoFixedLenFieldPerCI 340) /
((AvgNoColPerRow 316) * (1 -
PerCentVarLengthCol 320))
(NoVarLenFieldsPerCI 350)
(AvgVarLengthColSizePerTable 320))
* NoVarLenFieldPerCI 350) /
((AvgNoColPerRow 316) * (
PerCentVarLengthCol 320))
(AvgNoFixedLenFieldsPerNonCI 342)

NoVarCharICs 284 (VarCol_K)
TotalVarCharBytesPerRow 286
(VarBytes_K)

NoFixedSizeICs 280
(FixedCol__X)
TotalFixedBytesICPerRow 282
(FixedBytes__X)

((AvgRowSize 318) -
AvgVarLengthColSizePerTable 320)) *
AvgNoFixedLenFieldsPerNonCI 342) /
((AvgNoColPerRow 316) * (1 -
PerCentVarLengthCol 320))
(NoVarLenFieldsPerNonCI 342)
(AvgVarLengthColSizePerTable 320))

No VarCharICs 284 (VarCol__X)
Total VarCharBytesPerRow 286

10

15

20

25

30

35

40

45

50

55

60

65

10

TABLE 3-continued

FIG. 4, present application Expression using variables in FIG. 5

(VarBytes_ X) * NoVarLenFieldsPerNonCI 342) /
((AvgNoColPerRow 316) * (
PerCentVarLengthCol 320))

FillFactor 288 (FillFactor_K/X) FillFactor

Assumptions 352, and Parameters 306 and 210 thus
correspond to the variable names and algorithms already
discussed with respect to FIG. 4 and with respect to the
co-pending algorithm patent application. In this way, the
estimates or assumptions are used in the same algorithms
used in the detailed database size calculation.

The above relations and the algorithm in the co-pending
patent application are applied to a single table, a single
physical order index, and a single non-physical order index.
The remaining assumptions 352 and input parameters 310
are then used to calculate output DatabaseTotal 242, as
shown in Table 4.

TABLE 4

Aggregate

Mass Storage Space Used Expression

For tables
For physical order indexes

nPages_ D_ * PageSize * (NoTables 312)
nPages_ K * PagesSize *
(AvgNoCIPerTable 346) * (NoTables
312)

For nonphysical order indexes (nPages_ L + nPages_ X) * PageSize *
(AvgNoNonCIPerTable 340) *

(NoTables 312)

The DatabaseTotal 242 is then the sum of the above three
results.

Referring now to FIG. 6, a simplified data flow diagram
illustrates the data inputs and outputs for a method 400 used
to calculate the total mass storage required for an Oracle
8.0x RDBMS system, where the total mass storage is
represented by TotalMassStorage 202. Method 400 is the
method termed “detailed” in the present application, based
on detailed knowledge of the database requirements and
input of those requirements. In particular, the detailed inputs
are those inputs used to determine the required mass storage
required for each table, including the storage required for the
data and the indexes such as B-tree indexes. In a preferred
embodiment, the detailed inputs and methods are those
described in the co-pending algorithm patent application.
Method 400 is similar in some respects to method 200
described with respect to a detailed calculation method for
an SQL server system described in FIG. 4. Method 400 can
also utilize an INITRANS__ D 410 input parameter, which
represents the number of transactions that can concurrently
update a data block, and an INITRANS_X 412 input
parameter, which represents the number of transactions that
can currently update an index block. INITRANS_ D and
INITRANS_ X can be used in calculation of the row size, as
discussed in the co-pending algorithm patent application.
INITRANS D and INITRANS X can enter into calcula-
tion of the BlkHeader D and BlkHeader X wvariables,
which can in turn enter into the PageSize A D and Pag-
eSize__A_ X determinations. In some embodiments, a PCT-
FREE input is used in place of FillFactor 230, where
FillFactor=100-PCTFREE.

Referring now to FIG. 7, a method 450 is illustrated for
calculating the required total mass storage for a RDBMS
system, such as an Oracle system, with the total requirement
represented by TotalMassStorage 202. Method 450 uses
estimated mass storage requirements for the table and index

US 6,542,893 B1

11

requirements, as opposed to the detailed method previously
described. In particular, DataBaseTotal 242 can be calcu-
lated using estimates. A method or algorithm 452 is used to
operate on several user entered inputs 306, several assump-
tions 456, and parameters 418. Parameters 418 are as
previously described with respect to FIG. 4, and inputs 306
are as previously described with respect to FIG. 6. Outputs
212 are as previously described with respect to FIG. 4.
Similarly named and numbered variables may, of course,
have different values in the different methods and embodi-
ments.

Assumptions 456 are newly introduced in FIG. 7 and can
include: the average number of indexes per table, repre-
sented by AvgNolndexesPerTable 458; the number of fixed
length fields per index, presented by NoFixedLenFieldsPer-
Index 460; and the number of variable length fields per
index, represented by NoVarLenFieldsPerIndex 462.
AvgNolndexesPerTable 458 corresponds to AvgNoNonCI-
PerTable 340, NoFixedLenFieldsPerIndex 460 corresponds
to AvgNoFixedLenFieldsPerNonCI 342, and NoVarLen-
FieldsPerIndex 462 corresponds to NoVarLenFieldsperN-
onClI 344 all previously discussed with respect to FIG. 5.

Numerous advantages of the invention covered by this
document have been set forth in the foregoing description.
It will be understood, however, that this disclosure is, in
many respects, only illustrative. Changes may be made in
details, particularly in matters of shape, size, and arrange-
ment of parts without exceeding the scope of the invention.
The invention’s scope is, of course, defined in the language
in which the appended claims are expressed.

What is claimed is:

1. A computerized method for calculating the required
bytes of mass storage for a database management system
using detailed inputs and parameters, wherein the database
management system includes at least one database which
includes tables having a table size and having an index
having an index size comprising:

providing table inputs for tables in the database sufficient

to calculate estimated table size for each table;

providing index inputs for each index for each table in the
database sufficient to estimate the index size for each
table;

providing the input parameters for each database man-

agement system;

calculating a total storage requirement for the database

using said table inputs, index inputs and input param-
eters;

calculating a storage requirement for the data base man-

agement system using said table inputs, index inputs
and input parameters; and

displaying said total storage requirements for database

and database management system to a human user.

2. A computerized method for calculating the required
bytes of mass storage for a database management system as
recited in claim 1, wherein said calculated storage require-
ments have separate Operating System and application soft-
ware space requirements, system table space requirements,
scratch and sort space requirements, and log file space
requirements.

3. A computerized method for calculating the required
bytes of mass storage for a database management system as
recited in claim 1, wherein said input parameters include
parameters selected from the group consisting of a page size,
a fill factor, a log file space, a temporary space as a percent
of a formatted database size including indexes, a space
required for Operating System and application software, a

10

15

20

25

30

35

40

45

50

55

60

65

12

space required for system databases, a percent growth
required for the database, and a page file space.

4. A computerized method for calculating the required
bytes of mass storage for a database management system as
recited in claim 1, wherein said input parameters include a
page size.

5. A computerized method for calculating the required
bytes of mass storage for a database management system as
recited in claim 1, wherein said input parameters include a
fill factor.

6. A computerized method for calculating the required
bytes of mass storage for a database management system as
recited in claim 1, wherein said input parameters include a
percent growth required for the database.

7. A computerized method for calculating the required
bytes of mass storage for a database management system
using estimated inputs and parameters, wherein the database
management system includes at least one database which
includes tables having a table size and having an index
having an index size comprising:

providing table inputs for tables in the database sufficient

to calculate an estimated size for the database including
a number of tables, an amount of data, an average
number of columns per row, an average row size, a
percent variable length columns, and an average vari-
able length column size per table;

providing input parameters for each database manage-
ment system;

providing a plurality of database table size assumptions;

calculating a storage requirement for the data base man-
agement system using said inputs, input parameters,
and assumptions; and

displaying said storage requirements to a human user.

8. A computerized method for calculating the required
bytes of mass storage for a database management system as
recited in claim 7, wherein said calculated storage require-
ments have separate Operating System and application soft-
ware space requirements, system table space requirements,
scratch and sort space requirements, and log file space
requirements.

9. A computerized method for calculating the required
bytes of mass storage for a database management system as
recited in claim 7, wherein said input parameters include a
page size.

10. A computerized method for calculating the required
bytes of mass storage for a database management system as
recited in claim 7, wherein said input parameters include a
fill factor.

11. A computerized method for calculating the required
bytes of mass storage for a database management system as
recited in claim 7, wherein said input parameters include a
percent growth required for the database.

12. A computerized method for calculating the required
bytes of mass storage for a database management system as
recited in claim 7, wherein said assumptions include
assumptions selected from a group consisting of an average
number of non-cluster indexes per table, an average number
of fixed length fields per non-cluster index, an average
number of cluster indexes per table, an average number of
fixed length fields per cluster index, and a number of
variable length fields per cluster index.

13. A computerized method for calculating the required
bytes of mass storage for a database management system as
recited in claim 7, wherein said assumptions include an

US 6,542,893 B1

13

average number of non-cluster indexes per table and an
average number of fixed length fields per non-cluster index.

14. A computerized method for calculating the required
bytes of mass storage for a database management system as
recited in claim 7, wherein said assumptions include an
average number of cluster indexes per table, an average
number of fixed length fields per cluster index, and a number
of variable length fields per cluster index.

15. A computerized method for calculating the required
bytes of mass storage for a database management system
using estimated inputs and parameters, wherein the database
management system includes at least one database which
includes tables having a table size and having an index
having an index size comprising:

providing table inputs for tables in the database sufficient

to calculate an estimated size for the database including
a number of tables, an amount of data, an average
number of columns per row, an average row size, a
percent variable length columns, and an average vari-
able length column size per table;

5

10

15

14

providing the input parameters for each database man-
agement system including a page size, a fill factor, a log
file space, a temporary space as a percent of a formatted
database size including indexes, a space required for
Operating System and application software, a space
required for system databases, a percent growth
required for the database, and a page file space;

providing assumptions including an average number of
non-cluster indexes per table, an average number of
fixed length fields per non-cluster index, an average
number of cluster indexes per table, an average number
of fixed length fields per cluster index, and a number of
variable length fields per cluster index;

calculating a storage requirement for the data base man-
agement system using said inputs, input parameters,
and assumptions; and

displaying said storage requirements to a human user.

#* * * * #*

